Low-temperature Ignition of DME-air Mixture in A Straight Heated Tube Reactor

Jian Gaoa, Yuji Nakamuraa,*, Daiqing Zhaob.

a Division of Mechanical and Space Engineering, Hokkaido University, Japan
b Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, China

*Corresponding author. Fax&Tel: +81-11-706-6386;
E-mail: yuji-mg@eng.hokudai.ac.jp
Background – DME

Dimethyl ether (DME):

\[\text{CH}_3\text{OCH}_3 \]

DME: Multi-Use, Multi-Source Low Carbon Fuel

- Transportation
- Cooking & Heating
- Power Generation

Good ignition properties

- Low soot formation
- Low NOx emission
- etc…

Higher Reactivity at Low-temperature

Internal combustion engine design

Oxidation of DME at low-temperature should be better understood!

SAFETY FIRST!

From IDA website
http://aboutdme.org/index.asp?sid=1
Background – cool flame region of DME

Pressure (atm)

Temperature (K)

Curran, (2000)
Low-T Part

Pfahl, (96)

Dagaut, (98)

Liu, (2001)

Curran, (98)
&Dagaut, (96)

Maruta, (2010)
Curran, 2000
High-T Part

Slowly peroxide oxidation >>> cool flame >>> NTC >>> high-T oxidation >>> explosion

Cool Flame?

Cool Flame

NTC zone

High-Temperature Oxidation and combustion zone

NTC zone

High-Temperature Oxidation and combustion zone
Low-temperature auto-ignition was captured in a specific temperature and ER range.
Objective

- What’s the effect of the “corner” in U-shape reactor used in previous study?
- What’s the mechanism of the observed low-temperature auto-ignition?
- Why does the auto-ignition occur in the specific narrow range?
The auto-ignition is due to the chemical nature of DME, but not the irregular shape of the previous U-shape reactor.
Results – Periodic hot flame ignition

Flow rate of mixture: 78 ml/min Equivalence ratio: 1.47 Exposure time at 900 mm: 48 s

Periodic “cycle” behavior with robust periodic duration

Estimated flame propagation speed by image is higher than 0.88 m/s.
Results – Periodic two-stage ignition

Flow rate of mixture: 78 ml/min
Equivalence ratio: 1.73
Exposure time at 900 mm: 48 s

Temperature at 400 mm from inlet
Temperature at 900 mm from inlet

Weak flame
Hot flame

Both flames propagate!

One cycle = multiple weak flames + one hot flame
Results – Gas analysis

Time sequential gas analysis

- t1: 50 seconds after hot flame
- t2: 15 seconds after the first weak flame
- t3: 15 seconds after the last weak flame
- t4: 10 seconds after hot flame

Stable Oxidation: DME, O2 → HCHO, HCOOH, CH3OCHO

Chain-propagation reactions:

Ignition: DME, O2 → CH4, C2H2

Chain-branching reactions:

Results at 400 mm

Results at 900 mm
Discussion – Possible chain-branching steps

The auto-ignition may due to the accumulation of these peroxides and hydroperoxides.

The self-inhibition behavior may due to the thermal decomposition of these peroxides and hydroperoxides on account of sudden rising temperature.
Discussion – Controversy on HPMF in DME oxidation

HPMF (HOOCH$_2$OCHO), which was proposed by Curran DME-2000 Mechanism, has never been confirmed in any experiment so far.

HPMF (HOOCH$_2$OCHO)

chain branching

HCO + HCOOH

H$_2$O + HCOO COH

HOOCH$_2$OCH

CH$_2$OO + HCOOH

H$_2$ + CO + HC = OOOH

...

HPMF may lead some new propagation pathways; Also, there may be other chain-branching pathways exist without passing through HPMF.

High temperature dependency of the ignition

Improvement on the chain-branching steps of DME oxidation mechanism is necessary!
Conclusions

- Two kinds of flames (weak and hot) in DME/air mixture were captured with a constant equivalence ratio and temperature;

- The auto-ignition should be induced by the chain-branching precursors, CH$_2$OCH$_2$OOH and other possible peroxides and hydroperoxides, which may accumulate in a relatively longer exposure time;

- CH$_4$ and C$_2$H$_2$ act as two kinds of species due to the low-temperature ignition. Formation of HCHO, HCOOH, and CH$_3$OCHO are mainly due to stable oxidation;

- The ambiguity of reactions related to HPMF can be one of the important reasons that causes the strong temperature dependency of the auto-ignition.
Acknowledgements

- This work is supported by Clark Fund of Hokkaido University, and was supported by Hokkaido Gas Company Research Fund (yrs.2006&2008), Suzuki Foundation (yr.2007-2008), Iwatani-Naoji Foundation's Research Grant (yr.2009-2010), and JFE 21st Century Fundation (yr.2009-2010).

- Authors would like to express their sincere thanks to all supports to conduct this research and the previous work of former graduate students Mr. Tsukanaka and Mr. Sagawa.
Thank you for your attention!